Day 2

1. Encryption
 a. monoalphabetic ciphers
 c. Symmetric Encryption - caesar cipher (the key is how many letters to rotate it)
 - need secure algorithm, they can't decipher ciphertext or key even if they have some examples of ciphertext along with decrypted version
 - Keys need to be distributed in secure manner
 - cryptanalysis
 - they know something (either plaintext, or algorithm to deduce the key)
 - brute force
 - try every possible combination to guess the key
 d. Stream Ciphers

2. Hash functions:
 a. MD5
 b. sha1sum
 c. For message authentication. Encryption protects against passive attacks. Hash is used for active attacks (falsification of data and transactions). (Still falls under data integrity)

3. PKI
 - discuss PKI
 - Proposed in 1976 (diffie-hellman)
 - two separate keys
 - 6 ingredients to PKI
 - Plaintext
 - Encryption Algorithm
 - Public and private key
 - Each user generates a pair, public key is publicly available
 - encrypt message using persons public key, only corresponding private key can decrypt
 - private keys are never distributed
 - can ensure a person is who they say they are
 - when sending messages we can ensure confidentiality
 - when receiving messages we can ensure authentication and/or data integrity
 - Ciphertext
 - Decryption algorithm
 - look at /etc/moduli
 - diffie-hellman key exchange process
 - enables 2 users to securely reach agreement about shared secret that can be used as a secret key for symmetric encryption of messages
 - Asymmetric encryption algorithms
 - RSA = block cipher
 - currently uses 1024 bit key

4. Digital Signatures
 - bob creates message, generates hash value for the message, and encrypts hash code with private key, creating a digital signature
 - alice receives messages plus signature
 - recalculates hash value for message
 - decrypts signature using bobs public key
 - compares calculated hash value to decrypted hash value
 - the message is safe from alteration, but not from observation

5. Certificates
 - downside: some user could send their public key, purporting to be Bob.
 - solution is public key certificate
 - consists of public key, userid, plus signed by trusted 3rd party (ie verisign)