IT 4510 : Ethical Hacking

Encryption

Dr Joe Francom

Encryption

- monoalphabetic ciphers
- Symmetric Encryption
 - caesar cipher (the key is how many letters to rotate it)
- need secure algorithm, they can’t decipher ciphertext or key even if they have some examples of ciphertext along with decrypted version
- Keys need to be distributed in secure manner

Encryption

- cryptanalysis
 - they know something (either plaintext, or algorithm to deduce the key)
- brute force
 - try every possible combination to guess the key d. Stream Ciphers

Hash functions:

- MD5
- sha1sum
- For message authentication. Encryption protects against passive attacks. Hash is used for active attacks (falsification of data and transactions). (Still falls under data integrity)

PKI

- Proposed in 1976 (diffie-hellman)
- two separate keys
- 6 ingredients to PKI
 - Plaintext
 - Encryption Algorithm
 - Public and private key
 - Each user generates a pair, public key is publicly available

PKI More

- encrypt message using persons public key, only corresponding private key can decrypt
- private keys are never distributed
- can ensure a person is who they say they are
- when sending messages we can ensure confidentiality
- when receiving messages we can ensure authentication and/or data integrity
 - Ciphertext
 - Decryption algorithm

PKI More

- look at /etc/moduli
- diffie-hellman key exchange process
 - enables 2 users to securely reach agreement about shared secret that can be used as a secret key
for symmetric encryption of messages

- Asymmetric encryption algorithms
 - RSA = block cipher
 - currently uses 1024 bit key

Digital Signatures

- bob creates message, generates hash value for the message, and encrypts hash code with private key, creating a digital signature
- alice receives messages plus signature
 - recalculates hash value for message
 - decrypts signature using bobs public key
 - compares calculated hash value to decrypted hash value
- the message is safe from alteration, but not from observation

Certificates

- downside: some user could send their public key, purporting to be Bob.
- solution is public key certificate
 - consists of public key, userid, plus signed by trusted 3rd party (ie verisign)