Day 2

1. Encryption
 a. monoalphabetic ciphers
c c. Symmetric Encryption - caesar cipher (the key is how many letters to rotate it)
 ◦ need secure algorithm, they can’t decipher ciphertext or key even if they have some examples of ciphertext along with decrypted version
 ◦ Keys need to be distributed in secure manner
 ◦ cryptanalysis
 ▪ they know something (either plaintext, or algorithm to deduce the key)
 ◦ brute force
 ▪ try every possible combination to guess the key
d. Stream Ciphers

2. Hash functions:
 a. MD5
 b. sha1sum
c. For message authentication. Encryption protects against passive attacks. Hash is used for active attacks (falsification of data and transactions). (Still falls under data integrity)

3. PKI
 ◦ discuss PKI
 ▪ Proposed in 1976 (diffie-hellman)
 ▪ two separate keys
 ▪ 6 ingredients to PKI
 ▪ Plaintext
 ▪ Encryption Algorithm
 ▪ Public and private key
 ▪ Each user generates a pair, public key is publicly available
 ▪ encrypt message using persons public key, only corresponding private key can decrypt
 ▪ private keys are never distributed
 ▪ can ensure a person is who they say they are
 ▪ when sending messages we can ensure confidentiality
 ▪ when receiving messages we can ensure authentication and/or data integrity
 ▪ Ciphertext
 ▪ Decryption algorithm
 ◦ look at /etc/moduli
 ◦ diffie-hellman key exchange process
 ▪ enables 2 users to securely reach agreement about shared secret that can be used as a secret key for symmetric encryption of messages
 ◦ Asymmetric encryption algorithms
 ▪ RSA = block cipher
 ▪ currently uses 1024 bit key

4. Digital Signatures
 ◦ bob creates message, generates hash value for the message, and encrypts hash code with private key, creating a digital signature
 ◦ alice receives messages plus signature
 ▪ recalculates hash value for message
 ▪ decrypts signature using bobs public key
 ▪ compares calculated hash value to decrypted hash value
 ◦ the message is safe from alteration, but not from observation

5. Certificates
 ◦ downside: some user could send their public key, purporting to be Bob.
 ◦ solution is public key certificate
 ▪ consists of public key, userid, plus signed by trusted 3rd party (ie verisign)