CS 4307: Database Systems
Spring 2021 Syllabus

An introduction to database systems. Topics include the design and implementation of relational databases (B-trees, indexing, query planning and execution, transactions, ACID semantics) as well as data modeling and querying for applications using databases

Prerequisites
CS 2420, CS 2810, and CS 3005, each with a C- or better

Course fees

Computer lab access fee: $20, used to assist in maintaining computing infrastructure.

Sections

One section:

1. MWF 9:00 am in Smith 108
 CRN: 20642
 Final exam: TBD

Instructor

Instructor: Dr Russ Ross
Email: russ@dixie.edu
Phone: 435-652-7971 (note: email preferred)
Office: North Burns 226
Office Hours: Weekdays 1:00-2:00 pm (via Zoom)

Course learning outcomes

At the successful conclusion of this course, students will be able to:

1. Design and implement the major components of a database management system.
2. Analyze the storage needs of a software project and create a data schema and query strategy to address those needs.
3. Construct substantial software that balances requirements of data safety, performance, and complexity.
4. Debate and criticize modern approaches to data management.

Resources

Text

There is one required text for this course:

* Database System Concepts, 7th Edition
 by Abraham Silbershatz, Henry Korth, and S. Sudershnan
 ISBN: 9781260084504

Computers

You are required to bring a laptop to class every day with a charged, working battery. Any laptop is okay as long as it runs Windows 10, macOS, or Linux, and is connected to the university WiFi system. Chromebooks, iPads, and other tablets are NOT acceptable unless they run one of the three listed operating systems. You will be expected to complete work in class on a laptop that cannot be made up outside of class.
A limited number of laptops are available for students to check out for class in the event that your laptop is unavailable or you are unable to acquire a suitable machine. You should only rely on this option as a last resort.

You may use the computers in the Smith open computer lab. There will also be lab assistants in this lab.

You can also use your own personal computer for the assignments, though no support will be provided by the instructor. You are responsible for installing the necessary software and ensuring that it is compatible with the projects and assignments.

Course web site

This course has an accompanying website. You are responsible for announcements, the schedule, and other resources posted on the website. Grades will be managed using Canvas.

Assignments and exams

Reading

The student is responsible for reading the assigned material. A reading schedule is provided with the class schedule on the course website.

Assignments

There will be a project due almost every week during the semester. Projects are designed to take 10+ hours of work for successful completion. These assignments will involve various activities to promote a deeper understanding of the course materials. Most of the projects build upon previous work, so students who fall behind will not be able to complete the course successfully.

Final presentation

There will be no exams, but there will be a final presentation. Each student will be assignment a research paper to read and present to the entire class. Details and the schedule will be discussed in class.

Grading

Assignments, in-class activities, and exams each contribute to your point total. The assignments and projects comprise 70% of your grade and exams the remaining 30%.

Letter grades are assigned based on the percentage of possible points attained, according to the following chart:

<table>
<thead>
<tr>
<th>Minimum Percentage</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>A</td>
</tr>
<tr>
<td>90</td>
<td>A-</td>
</tr>
<tr>
<td>87</td>
<td>B+</td>
</tr>
<tr>
<td>83</td>
<td>B</td>
</tr>
<tr>
<td>80</td>
<td>B-</td>
</tr>
<tr>
<td>77</td>
<td>C+</td>
</tr>
<tr>
<td>73</td>
<td>C</td>
</tr>
<tr>
<td>70</td>
<td>C-</td>
</tr>
<tr>
<td>67</td>
<td>D+</td>
</tr>
<tr>
<td>63</td>
<td>D</td>
</tr>
<tr>
<td>60</td>
<td>D-</td>
</tr>
<tr>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

Course policies

COVID-19

All students attending class in person must wear a face covering that covers both mouth and nose for the entire class period and when working in the Smith Computing Center or visiting faculty offices. This is a state requirement, a university requirement, and a course requirement. Students who can not or will not
wear a mask should stay off campus and attend class remotely. Any student attending class in person and refusing to wear a mask properly will receive a failing grade for the class and will not be permitted to continue.

If and when you attend class remotely and synchronously, you must turn on your video camera and give your full attention to the class just as you would in person. You may use an altered background image if you prefer for privacy.

Attendance

Students are responsible for material covered and announcements made in class. School-related absences may be made up only if prior arrangements are made. The class schedule presented is approximate. The instructor reserves the right to modify the schedule according to class needs. Changes will be announced in class. Exams and quizzes cannot be made up unless arrangements are made *prior* to the scheduled time.

Occasional absences are acceptable as long as the student keeps up with assignment work. Students who miss more than two consecutive weeks of class or who miss more than 20% of scheduled classes during the semester without making prior arrangements will receive a failing grade. Students who miss any scheduled exam (including midterm exams and the final exam) or fail to complete a final project without making prior arrangements will receive a failing grade.

This course can only be completed by attending classes and completing all assigned work to a satisfactory level. There is no procedure for testing out of the class.

Distractions

Electronics—including laptops—in class have been demonstrated to have a negative impact on student learning (see [Shriram Krishnamurthi’s writeup for background](https://example.com)). This class has a NO DISTRACTIONS policy, with a few exceptions:

1. When I ask you to use your laptop (or phone) for a specific activity in class. In this case you are permitted to use it for the duration of the activity, but not during the rest of the class.
2. If you need a laptop to accommodate a disability. If this is the case, please talk to me in advance and please visit the Disability Resource Center to document your need. To help other students in the class, please sit near one of the edges so your laptop does not distract other students more than necessary.

This policy extends to phones, tablets, and other electronic devices. I encourage you to pay full attention to class and take notes on paper.

Time Commitment

Courses should require about 45 hours of work per credit hour of class. This class will require about 135 hours of work on the part of the student to achieve a passing grade, which is approximately 9 hours per week. If you do not have the time to spend on this course, you should probably rethink your schedule.

Late Policy

The lateness policy of this course is designed to encourage students to stay up-to-date on the current topics and assignments. Each assignment has a soft due date (when students are expected to complete it) and a cutoff date (after which submissions are no longer accepted).

Assignments may be made up after the cutoff date, subject to the following constraints:

1. No old assignments are accepted until the current, active assignment is complete. Students should focus on the current projects, instructional materials, and in-class activities, and only go back to work on older assignments when they are fully caught up or even ahead on current assignments.
2. Old assignments (anything accepted after the initial cutoff date) will be subject to a 15% penalty.

Collaboration

Limited collaboration with other students in the course is permitted. Students may seek help learning concepts and developing programming skills from whatever sources they have available, and are encouraged to do so. Collaboration on assignments, however, must be confined to course instructors, lab assistants, and other students in the course. Students are free to discuss strategies for solving programming assignments with each other, but this must not extend to the level of programming code. Each student must code his/her own solution to each assignment. See the section on cheating.
Cheating

Cheating will not be tolerated, and will result in a failing grade for the students involved as well as possible disciplinary action from the college. Cheating includes, but is not limited to, turning in homework assignments that are not the student’s own work. It is okay to seek help from others and from reference materials, but only if you learn the material. As a general rule, if you cannot delete your assignment, start over, and re-create it successfully without further help, then your homework is not considered your own work.

You are encouraged to work in groups while studying for tests, discussing class lectures, discussing algorithms for homework solutions, and helping each other identify errors in your homework solutions. If you are unsure if collaboration is appropriate, contact the instructor. Also, note exactly what you did. If your actions are determined to be inappropriate, the response will be much more favorable if you are honest and complete in your disclosure.

Where collaboration is permitted, each student must still create and type in his/her own solution. Any kind of copying and pasting is not okay. If you need help understanding concepts, get it from the instructor or fellow classmates, but never copy another’s code or written work, either electronically or visually. The line between collaborating and cheating is generally one of language: talking about solutions in English or other natural languages is usually okay, while discussions that take place in programming languages are usually not okay. It is a good idea to wait at least 30 minutes after any discussion to start your independent write-up. This will help you commit what you have learned to long-term memory as well as help to avoid crossing the line to cheating.

College policies

Click on this link: https://calendar.dixie.edu/ for the official academic calendar, which has several important dates you should be aware of.

Click on this link: https://employees.dixie.edu/faculty-resources/required-elements-in-dsu-syllabi/ and scroll down to the section starting with “Important Links” for links to resources and policies that apply university wide.