Finite Automata

Reading: Sipser §1.1 and §1.2.
Deterministic Finite Automata (DFAs)

Example: Home Stereo

- $P =$ power button (ON/OFF)
- $S =$ source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode

A computational problem: does a given sequence of button presses $w \in \{P, S\}^*$ leave the system with the radio on?
Finite Automata

Deterministic Finite Automata

Formal Definition of a DFA

A DFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q: Finite set of states
- Σ: Alphabet
- δ: “Transition function”, $Q \times \Sigma \rightarrow Q$
- q_0: Start state, $q_0 \in Q$
- F: Accept (or final) states, $F \subseteq Q$

If $\delta(p, \sigma) = q$,

then if M is in state p and reads symbol $\sigma \in \Sigma$

then M enters state q (while moving to next input symbol)

Home Stereo example:
Finite Automata

Deterministic Finite Automata

Another Visualization

Finite-state control changes state depending on:

- current state
- next symbol

Reading head moves left to right, one square at a time

Input tape

Start state marked with $<$

Double-circled states are accepting or final

Curtis Larsen (Dixie State University)

CS 3530

Fall 2018 5 / 68
Accepting Strings

\(M \) accepts string \(X \) if

- After starting \(M \) in the start (initial) state with head on first square,
- when all of \(X \) has been read,
- \(M \) winds up in a final state.
Bounded Counting: A DFA for
\[\{ x : x \text{ has an even # of } a's \text{ and an odd # of } b's \} \]

Transition function \(\delta \):

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
<td>(q_1)</td>
</tr>
</tbody>
</table>

i.e. \(\delta(q_0, a) = q_1 \), etc.

\(Q = \{ q_0, q_1, q_2, q_3 \} \) \(\Sigma = \{ a, b \} \) \(F = \{ q_2 \} \)

\(\triangleright \circ \) = start state \(\circ \) = final state
Another Example, to work out together

- **Pattern Recognition**: A DFA that accepts \(\{ x : x \text{ has } aab \text{ as a substring} \} \).
Formal Definition of Computation

\[M = (Q, \Sigma, \delta, q_0, F) \] accepts \(w = w_1w_2 \cdots w_n \in \Sigma^* \)
(where each \(w_i \in \Sigma \)) if there exist \(r_0, \ldots, r_n \in Q \) such that

1. \(r_0 = q_0, \)
2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, \ldots, n - 1 \) and
3. \(r_n \in F. \)

The language recognized (or accepted) by \(M \), denoted \(L(M) \), is the set of all strings accepted by \(M \).
Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define \(\delta^* : Q \times \Sigma^* \rightarrow Q \) by
 \[
 \delta^*(q, \varepsilon) = q,
 \delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma).
 \]

- Intuitively, \(\delta^*(q, w) = \) “state reached after starting in \(q \) and reading the string \(w \).”

- \(M \) accepts \(w \) if \(\delta^*(q_0, w) \in F \).
Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define $\delta^* : Q \times \Sigma^* \rightarrow Q$ by $\delta^*(q, \varepsilon) = q$, $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$.

- Intuitively, $\delta^*(q, w) =$
 “state reached after starting in q and reading the string w.”

- M accepts w if $\delta^*(q_0, w) \in F$.

Determinism: Given M and w, the states r_0, \ldots, r_n are uniquely determined. Or in other words, $\delta^*(q, w)$ is well defined for any q and w: There is precisely one state to which w “drives” M if it is started in a given state.
The impulse for nondeterminism

A language for which it is hard to design a DFA:

\[\{ x_1 x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in \{ aab, aaba, aaaa \} \} \]

But it is easy to imagine a “device” to accept this language if there sometimes can be several possible transitions!
Nondeterministic Finite Automata

An **NFA** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q, \Sigma, q_0, F\) are as for DFAs
- \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(Q)\)

When in state \(p\) reading symbol \(\sigma\), can go to any state \(q\) in the set \(\delta(p, \sigma)\).

- there may be more than one such \(q\), or
- there may be none (in case \(\delta(p, \sigma) = \emptyset\)).

Can “jump” from \(p\) to any state in \(\delta(p, \varepsilon)\) without moving the input head.
Computations by an NFA

\[N = (Q, \Sigma, \delta, q_0, F) \text{ accepts } w \in \Sigma^* \text{ if we can write } w = y_1 y_2 \ldots y_m \]

where each \(y_i \in \Sigma \cup \{\varepsilon\} \) and there exist \(r_0, \ldots, r_m \in Q \) such that

1. \(r_0 = q_0 \),
2. \(r_{i+1} \in \delta(r_i, y_{i+1}) \) for each \(i = 0, \ldots, m - 1 \), and
3. \(r_m \in F \).

Nondeterminism: Given \(N \) and \(w \), the states \(r_0, \ldots, r_m \) are not necessarily determined.
Example of an NFA

\[N = (\{ q_0, q_1, q_2, q_3 \}, \{ a, b \}, \delta, q_0, \{ q_0 \}) \], where \(\delta \) is given by:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{ q_1 }</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>{ q_2 }</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>{ q_0 }</td>
<td>{ q_0, q_3 }</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{ q_0 }</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Work out the tree of all possible computations on \(aabaab \)
How to simulate NFAs?

- NFA accepts w if there is at least one accepting computational path on input w.
- But the number of paths may grow exponentially with the length of w!
- Can exponential search be avoided?
Reading: Sipser §1.2.
NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem: For every NFA N, there exists a DFA M such that $L(M) = L(N)$.

Proof Outline: Given any NFA N, to construct a DFA M such that $L(M) = L(N)$:

- Have the DFA keep track, at all times, of all possible states the NFA could be in after reading the same initial part of the input string.
- I.e., the states of M are sets of states of N, and $\delta^*(M)(R, w)$ is the set of all states N could reach after reading w, starting from a state in R.
NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem: For every NFA N, there exists a DFA M such that $L(M) = L(N)$.

Proof Outline: Given any NFA N, to construct a DFA M such that $L(M) = L(N)$:

- Have the DFA keep track, at all times, of all possible states the NFA could be in after reading the same initial part of the input string.

- I.e., the **states** of M are **sets** of states of N, and $\delta^*_M(R, w)$ is the set of all states N could reach after reading w, starting from a state in R.
Example of the SUBSET CONSTRUCTION

NFA N for \(\{ x_1 x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in \{ aab, aaba, aaa \} \} \).

N starts in state 0 so we will construct a DFA M starting in state \(\{0\} \).
Example of the **SUBSET CONSTRUCTION**

NFA N for \(\{ x_1 x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in \{ aab, aaba, aaa \} \} \).

N starts in state 0 so we will construct a DFA M starting in state \(\{0\} \).

Here it is:

All other transitions are to the “dead state” \(\emptyset \).

The other states are unreachable, though technically must be defined. Final states are all those containing 0, the final state of N.
Formal Construction of DFA M from NFA $N = (Q, \Sigma, \delta, q_0, F)$

On the assumption that $\delta(p, \varepsilon) = \emptyset$ for all states p.
(i.e., we assume no ε-transitions, just to simplify things a bit)

$M = (Q', \Sigma, \delta', q_0', F')$ where

- $Q' = \mathcal{P}(Q)$
- $q_0' = \{q_0\}$
- $F' = \{R \subseteq Q : R \cap F \neq \emptyset\}$ (that is, $R \in Q'$)
- $\delta'(R, \sigma) = \{q \in Q : q \in \delta(r, \sigma)$ for some $r \in R\}$
 $= \bigcup_{r \in R} \delta(r, \sigma)$
Proving that the construction works

Claim: For every string w, running M on input w ends in the state $\{ q \in Q : \text{some computation of } N \text{ on input } w \text{ ends in state } q \}$.

Pf: By induction on $|w|$.

Can be extended to work even for NFAs with ε-transitions.

“THE SUBSET CONSTRUCTION”
Closure Properties

Theorem: The class of regular languages is closed under:

- **Union:** $L_1 \cup L_2$
- **Concatenation:** $L_1 \circ L_2 = \{ xy : x \in L_1 \text{ and } y \in L_2 \}$
- **Kleene *:** $L_1^* = \{ x_1 x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in L_1 \}$
- **Complement:** $\overline{L_1}$
- **Intersection:** $L_1 \cap L_2$
Theorem: The class of regular languages is closed under:

- Union: \(L_1 \cup L_2 \)
- Concatenation: \(L_1 \circ L_2 = \{ xy : x \in L_1 \text{ and } y \in L_2 \} \)
- Kleene *: \(L_1^* = \{ x_1 x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in L_1 \} \)
- Complement: \(\overline{L_1} \)
- Intersection: \(L_1 \cap L_2 \)

Union: If \(L_1 \) and \(L_2 \) are regular, then \(L_1 \cup L_2 \) is regular.

\(M \) has the states and transitions of \(M_1 \) and \(M_2 \) plus a new start state \(\varepsilon \)-transitioning to the old start states.
Concatenation, Kleene*, Complementation

Concatenation:

\[L(M) = L(M_1) \circ L(M_2) \]

Kleene:

\[L(M) = L(M_1)^* \]

Complement:

\[L(M) = \overline{L(M_1)} \]
NFAs and DFAs Closure Properties

Closure Properties

Concatenation, Kleene*, Complementation

Concatenation:
\[L(M) = L(M_1) \circ L(M_2) \]

**Kleene*:
\[L(M) = L(M_1)^* \]

Complement:
\[L(M) = \overline{L(M_1)} \]

- Assume \(M \) is deterministic (or make it so)
- Invert final/nonfinal states
Closure under intersection

Intersection: \(S \cap T = \overline{S} \cup \overline{T} \)

Hence closure under union and complement implies closure under intersection.
A more constructive and direct proof of closure under intersection

Better way (“Cross Product Construction”):

From DFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, construct $M = (Q, \Sigma, \delta, q_0, F)$:

$$Q = Q_1 \times Q_2$$
$$F = F_1 \times F_2$$
$$\delta(\langle r_1, r_2 \rangle, \sigma) = \langle \delta_1(r_1, \sigma), \delta_2(r_2, \sigma) \rangle$$
$$q_0 = \langle q_1, q_2 \rangle$$

Then $L(M_1) \cap L(M_2) = L(M)$
Some Efficiency Considerations

The subset construction shows that any n-state NFA can be implemented as a 2^n-state DFA.

<table>
<thead>
<tr>
<th>NFA States</th>
<th>DFA States</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>2^{100}</td>
</tr>
<tr>
<td>1000</td>
<td>2^{1000} ≫ the number of particles in the universe</td>
</tr>
</tbody>
</table>

How to implement this construction on an ordinary digital computer?

NFA states
1, \ldots, n

DFA state bit vector

\[
\begin{array}{ccccccc}
0 & 1 & 1 & 0 & \cdots & 1 \\
1 & 2 & & & & n \\
\end{array}
\]
Is this construction the best we can do?

Could there be a construction that always produces an n^2 state DFA for example?

Theorem: For every $n \geq 1$, there is a language L_n such that

1. There is an $(n + 1)$-state NFA recognizing L_n.
2. There is no DFA recognizing L_n with fewer than 2^n states.

Conclusion: For finite automata, nondeterminism provides an **exponential savings** over determinism (in the worst case).
Proving that exponential blowup is sometimes unavoidable

(Could there be a construction that always produces an n^2 state DFA for example?)

Consider (for some fixed $n = 17$, say)

$L_n = \{ w \in \{a, b\}^* : \text{the } n\text{th symbol from the right end of } w \text{ is an } a \}$

- There is an $(n + 1)$-state NFA that accepts L_n.
- There is no DFA that accepts L_n and has $< 2^n$ states
A “Fooling Argument”

- Suppose a DFA M has $< 2^n$ states, and $L(M) = L_n$
- There are 2^n strings of length n.
- By the pigeonhole principle, two such strings $x \neq y$ must drive M to the same state q.
- Suppose x and y differ at the k^{th} position from the right end (one has a, the other has b) ($k = 1, 2, \ldots, \text{or } n$)
- Then M must treat xa^{n-k} and ya^{n-k} identically (accept both or reject both). These strings differ at position n from the right end.
- So $L(M) \neq L_n$, contradiction. QED.
Illustration of the fooling argument

\[M \text{ is in state } q_0 \quad M \text{ is in state } q \]

\[x \neq y \]

\[\begin{array}{c}
 x \\
 \neq \\
 y \\
\end{array} \]

\[\begin{array}{c}
 a \\
 a \\
 \vdots \\
 a \\
\end{array} \quad \begin{array}{c}
 a \\
 a \\
 \vdots \\
 a \\
\end{array} \]

\[\begin{array}{c}
 b \\
 b \\
 \vdots \\
 b \\
\end{array} \quad \begin{array}{c}
 a \\
 a \\
 \vdots \\
 a \\
\end{array} \]

\[M \text{ in state } q_0 \quad M \text{ in state } q \]

\[x a^{n-k} \quad y a^{n-k} \]

\[\begin{array}{c}
 x a^{n-k} \\
 \vdots \\
 y a^{n-k} \\
\end{array} \]

\[\begin{array}{c}
 a \\
 a \\
 \vdots \\
 a \\
\end{array} \quad \begin{array}{c}
 a \\
 a \\
 \vdots \\
 a \\
\end{array} \]

\[M \text{ in state } q_0 \quad M \text{ in state } q \]

Different symbols \(n \) positions from right

\[M \text{ in same state } p \]

\[\begin{itemize}
 \item \(x \) and \(y \) are different strings
 (so there is a position \(k \) where one has \(a \) and the other has \(b \))
 \item But both strings drive \(M \) from \(s \) to the same state \(q \)
\end{itemize} \]
What the argument proves

- This shows that the subset construction is within a factor of 2 of being optimal
- In fact it is optimal, i.e., as good as we can do in the worst case
- In many cases, the “generate-states-as-needed” method yields a DFA with $\ll 2^n$ states
 (e.g. if the NFA was deterministic to begin with!)
Regular Expressions

Reading: Sipser §1.3.
Let $\Sigma = \{a, b\}$. The regular expressions over Σ are certain expressions formed using the symbols $\{a, b, (,), \varepsilon, \emptyset, \cup, \circ, *\}$.

We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).

Construction Rules (= inductive/recursive definition):

1. $a, b, \varepsilon, \emptyset$ are regular expressions
2. If R_1 and R_2 are RE’s, then so are $(R_1 \circ R_2)$, $(R_1 \cup R_2)$, and (R_1^*).

Examples:

- $(a \circ b)$
- $(((a \circ (b^*)) \circ c) \cup ((b^*) \circ a))^*$
- (\emptyset^*)
What REs Do

- Regular expressions (which are strings) represent languages (which are sets of strings), via the function L:

 1. $L(a) = \{a\}$
 2. $L(b) = \{b\}$
 3. $L(\varepsilon) = \{\varepsilon\}$
 4. $L(\emptyset) = \emptyset$
 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
 6. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
 7. $L((R_1^*)) = L(R_1)^*$

- Example:

 $L(((a^*) \circ (b^*))) = \{a\}^* \circ \{b\}^*$

- $L(\cdot)$ is called the **semantics** of the expression.
Syntactic Shorthand

- Drop the distinction between red and black, between object language and metalanguage
- Omit \(\circ \) symbol and many parentheses
- Union and concatenation of languages are associative

 i.e., for any languages \(L_1, L_2, L_3 \):

 \[(L_1 L_2)L_3 = L_1(L_2 L_3) \text{ and } (L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)\]

 so we can write just \(R_1 R_2 R_3 \) and \(R_1 \cup R_2 \cup R_3 \)

 For example, the following are all equivalent:

 \[
 (((ab)c) \quad (a(bc)) \quad abc
 \]

- **Equivalent** means “same semantics, maybe different syntax”
More syntactic sugar

By convention, $*$ takes precedence over \circ, which takes precedence over \cup.

So $a \cup bc^*$ is equivalent to $(a \cup (b \circ (c^*)))$

Σ is shorthand for $a \cup b$ (or the analogous RE for whatever alphabet is in use).
Examples of Regular Languages

Strings ending in $a = \Sigma^* a$

Strings containing the substring $abaab = ?$

Strings of even length $= (a a \cup a b \cup b a \cup b b)^*$

Strings with even # of a's $= (b \cup a b^* a)^*$

$= b^* (a b^* a b^*)^*$
Examples of Regular Languages

Strings ending in \(a = \Sigma^* a \)

Strings containing the substring \(abaab = ? \)

Strings of even length \(= (aa \cup ab \cup ba \cup bb)^* \)

Strings with even # of \(a \)'s \(= (b \cup ab^* a)^* \)
\(= b^* (ab^* ab^*)^* \)

Strings with \(\leq \) two \(a \)'s \(= ? \)
Examples of Regular Languages

Strings ending in $a = \Sigma^* a$

Strings containing the substring $abaab = \?

Strings of even length $= (aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a’s $= (b \cup ab^* a)^*$

Strings with \leq two a’s $= \?

Strings of form $x_1 x_2 \ldots x_k, k \geq 0$, each $x_i \in \{aab, aaba, aaa\} = \?$
Examples of Regular Languages

Strings ending in $a = \Sigma^* a$

Strings containing the substring $abaab = ?$

Strings of even length $= (aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a’s $= (b \cup ab^* a)^* = b^*(ab^* ab^*)^*$

Strings with \leq two a’s $= ?$

Strings of form $x_1 x_2 \ldots x_k, k \geq 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Decimal numerals, no leading zeros

$= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$
Examples of Regular Languages

Strings ending in \(a = \Sigma^* a \)

Strings containing the substring \(abaab = ? \)

Strings of even length \(= (aa \cup ab \cup ba \cup bb)^* \)

Strings with even \# of \(a \)'s \(= (b \cup ab^* a)^* \)
\[= b^* (ab^* ab^*)^* \]

Strings with \(\leq \) two \(a \)'s \(= ? \)

Strings of form \(x_1 x_2 \ldots x_k, k \geq 0, each x_i \in \{aab, aaba, aaa\} = ? \)

Decimal numerals, no leading zeros
\[= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*) \]

All strings with an even \# of \(a \)'s and an even \# of \(b \)'s
\[= (b \cup ab^* a)^* \cap (a \cup ba^* b)^* \] but this isn't a regular expression
Examples of Regular Languages

Strings ending in \(a = \Sigma^* a \)

Strings containing the substring \(abaab = ? \)

Strings of even length = \((aa \cup ab \cup ba \cup bb)^* \)

Strings with even # of \(a \)'s = \((b \cup ab^* a)^* \) = \(b^*(ab^* ab^*)^* \)

Strings with \(\leq \) two \(a \)'s = ?

Strings of form \(x_1 x_2 \ldots x_k, k \geq 0, \text{each } x_i \in \{aab, aaba, aaa\} = ? \)

Decimal numerals, no leading zeros
\[= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*) \]

All strings with an even # of \(a \)'s and an even # of \(b \)'s
\[= (b \cup ab^* a)^* \cap (a \cup ba^* b)^* \text{ but this isn't a regular expression} \]
\[= (aa \cup bb)^*((ab \cup ba)(aa \cup bb)^*(ab \cup ba)(aa \cup bb)^*)^* \]
Equivalence of REs and FAs

Recall: we call a language **regular** if there is a finite automaton that recognizes it.

Theorem: For every regular expression R, $L(R)$ is regular.

Proof (going back to hyper-formality for a moment):

Induct on the construction of regular expressions (“structural induction”).

Base Case: R is a, b, ε, or \emptyset

![Diagram](image)

accepts $\{\sigma\}$ accepts \emptyset accepts $\{\varepsilon\}$
Inductive Step: If R_1 and R_2 are REs and $L(R_1)$ and $L(R_2)$ are regular (inductive hyp.), then so are:

- $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- $L((R_1^*)) = L(R_1)^*$

(By the closure properties of the regular languages).

Proof is **constructive** (actually produces the equivalent NFA, not just proves its existence).
Example conversion of a RE to a FA

\((a \cup \varepsilon)(aa \cup bb)^*\)
The Other Direction

Theorem: For every regular language L, there is a regular expression R such that $L(R) = L$.

Proof:

Define **generalized NFAs** (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- One start state q_{start} and only one accept state q_{accept}.
- Exactly one transition from q_i to q_j for every two states $q_i \neq q_{\text{accept}}$ and $q_j \neq q_{\text{start}}$ (including self-loops).
Steps toward the proof

Lemma: For every NFA N, there is an equivalent GNFA G.

- Add new start state, new accept state. Transitions?
- If multiple transitions between two states, combine. How?
- If no transition between two states, add one. With what transition?

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- **Base case:** $k = 2$. Set R to be the label of the transition from q_{start} to q_{accept}.
Ripping and repairing GNFAs to reduce the number of states

- **Inductive Hypothesis:** Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \geq 2$).

- **Induction Step:** Given a $(k+1)$-state GNFA G, we will construct an equivalent k-state GNFA G'.

Rip: Remove a state q_r (other than q_{start}, q_{accept}).

Repair: For every two states $q_i \notin \{q_{\text{accept}}, q_r\}$, $q_j \notin \{q_{\text{start}}, q_r\}$, let $R_{i,j}$, $R_{i,r}$, $R_{r,r}$, $R_{r,j}$ be REs on transitions $q_i \rightarrow q_j$, $q_i \rightarrow q_r$, $q_r \rightarrow q_r$ and $q_r \rightarrow q_j$ in G, respectively.

In G', put RE $R_{i,j} \cup R_{i,r}R_{r,r}^*R_{r,j}$ on transition $q_i \rightarrow q_j$.

Argue that $L(G') = L(G')$, which is regular by IH.

Also **constructive**.
Example conversion of an NFA to a RE

An NFA accepting strings with an even number of a’s and an even number of b’s.
Reading: Sipser, “The Diagonalization Method,” pages 174–178 (from just before Definition 4.12 up to Corollary 4.18).
Examples of Regular Languages

- \(\{ w \in \{a, b\}^* : \text{even } |w| \text{ & every 3rd symbol is an } a \} \)
- \(\{ w \in \{a, b\}^* : \text{There are not 7 } a\text{’s or 7 } b\text{’s in a row} \} \)
- \(\{ w \in \{a, b\}^* : w \text{ has both an even number of } a\text{’s and an even number of } b\text{’s} \} \)
- \(\{ w : w \text{ is written using the ASCII character set and every substring delimited by spaces, punctuation marks, or the beginning or end of the string is in the American Heritage Dictionary} \} \)
Questions about regular languages

Give X = a regular expression, DFA, or NFA, how could you tell if:

- $x \in L(X)$, where x is some string?
- $L(X) = \emptyset$?
- $x \in L(X)$ but $x \not\in L(Y)$?
- $L(X) = L(Y)$, where Y is another RE/FA?
- $L(X)$ is infinite?
- There are infinitely many strings that belong to both $L(X)$ and $L(Y)$?
Goal: Existence of Non-Regular Languages

Intuition:

- Every regular language can be described by a finite string (namely a regular expression).
- To specify an arbitrary language requires an infinite amount of information.
 - For example, an infinite sequence of bits would suffice.
 - Σ^* has a lexicographic ordering, and the i’th bit of an infinite sequence specifying a language would say whether or not the i’th string is in the language.

\Rightarrow Some languages must not be regular.

How to formalize?
Countability

- **A set** S **is finite** if there is a bijection $\{1, \ldots, n\} \leftrightarrow S$ for some $n \geq 0$.

- **Countably infinite** if there is a bijection $f : \mathbb{N} \leftrightarrow S$

 This means that S can be “enumerated,” i.e. listed as $\{s_0, s_1, s_2, \ldots\}$ where $s_i = f(i)$ for $i = 0, 1, 2, 3, \ldots$

 So \mathbb{N} itself is countably infinite

 So is \mathbb{Z} (integers) since $\mathbb{Z} = \{0, -1, 1, -2, 2, \ldots\}$

 Q: What is f?

- **Countable** if S is finite or countably infinite

- **Uncountable** if it is not countable
Proposition: The union of 2 countably infinite sets is countably infinite.

If \(A = \{ a_0, a_1, \ldots \} \), \(B = \{ b_0, b_1, \ldots \} \),

The \(A \cup B = C = \{ c_0, c_1, \ldots \} \)

where \(c_i = \begin{cases}
\frac{a_i}{2} & \text{if } i \text{ is even} \\
\frac{b(i-1)}{2} & \text{if } i \text{ is odd}
\end{cases} \)

Q: If we are being fussy, there is a small problem with this argument. What is it?

Proposition: If there is a function \(f : \mathbb{N} \rightarrow S \) that is onto \(S \) then \(S \) is countable.
Proposition: The union of countably many countably infinite sets is countably infinite

Each element is “reached” eventually in this ordering

Q: What is the bijection $\mathbb{N} \leftrightarrow \mathbb{N} \times \mathbb{N}$?
Are there uncountable sets?
(Infinite but not countably infinite)

Theorem: $\mathcal{P}(\mathbb{N})$ is uncountable
(The set of all sets of natural numbers)

Proof by contradiction: (i.e. assume that $\mathcal{P}(\mathbb{N})$ is countable and show that this results in a contradiction)

- Suppose that $\mathcal{P}(\mathbb{N})$ were countable.
- There there is an enumeration of all subsets of \mathbb{N} say
 $$\mathcal{P}(\mathbb{N}) = \{S_0, S_1, \ldots\}$$
Diagonalization

<table>
<thead>
<tr>
<th>(S_i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(S_1)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(S_2)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(S_3)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

“Y” in row \(i \), column \(j \) means \(j \in S_i \)

- Let \(D = \{ i \in \mathbb{N} : i \in S_i \} \) be the diagonal
- \(D = YNNY \ldots = \{0, 3, \ldots \} \)
- Let \(\overline{D} = \mathbb{N} - D \) be its complement
- \(\overline{D} = NYYYN \ldots = \{1, 2, \ldots \} \)
- **Claim:** \(\overline{D} \) is omitted from the enumeration, contradicting the assumption that every set of natural numbers is one of the \(S_i \)'s.
- **Pf:** \(\overline{D} \) is different from each row; they differ at the diagonal.
An alphabet Σ is finite by definition

Proposition: Σ^* is countably infinite

So every language is either finite or countably infinite

$P(\Sigma^*)$ is uncountable, being the set of subsets of a countable infinite set.

i.e. There are uncountably many languages over any alphabet

Q: Even if $|\Sigma| = 1$?
Existence of Non-regular Languages

Theorem: For every alphabet Σ, there exists a non-regular language over Σ.

Proof:

- There are only countably many regular expressions over Σ.
 - \Rightarrow There are only countably many regular languages over Σ.

- There are uncountably many languages over Σ.

- Thus at least one language must be non-regular.
 - \Rightarrow In fact, “almost all” languages must be non-regular.

Q: Could we do this proof using DFAs instead?

Q: Can we get our hands on an *explicit* non-regular language?
Non-Regular Languages

Reading: Sipser, §1.4.
Goal: Explicit Non-Regular Languages

It *appears* that a language such as

\[L = \{ x \in \Sigma^* : |x| = 2^n \text{ for some } n \geq 0 \} = \{ a, b, aa, ab, ba, bb, aaaa, \ldots, bbbb, aaaaaaaa, \ldots \} \]

can’t be regular because the “gaps” in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn’t a proof!

Approach:

1. Prove some general property \(P \) of all regular languages.
2. Show that \(L \) does **not** have \(P \).
Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the **pumping length**) such that every string $s \in L$ of length at least p
can be divided into $s = xyz$, where $y \neq \varepsilon$ and for every $n \geq 0$, $xy^n z \in L$.

$n = 1$

\[
\begin{array}{ccc}
 x & y & z \\
\end{array}
\]

$n = 0$

\[
\begin{array}{cc}
 x & z \\
\end{array}
\]

$n = 2$

\[
\begin{array}{cccc}
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
 x & y & y & z \\
 x & y & y & z \\
\end{array}
\]
Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the **pumping length**) such that every string $s \in L$ of length at least p can be divided into $s = xyz$, where $y \neq \varepsilon$ and for every $n \geq 0$, $xy^n z \in L$.

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

…

▶ Why is the part about p needed?
▶ Why is the part about $y \neq \varepsilon$ needed?
Proof of Pumping Lemma

(Another fooling argument)

- Since L is regular, there is a DFA M accepting L.
- Let $p = \# \text{ states in } M$.
- Suppose $s \in L$ has length $l \geq p$.
- M passed through a sequence of $l + 1 > p$ states while accepting s (including the first and last states): say, q_0, \ldots, q_l.
- Two of these states must be the same: say, $q_i = q_j$ where $i < j$.
Pumping, continued

- Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

 $\begin{array}{|c|c|c|}
 \hline
 x & y & z \\
 \hline
 \end{array}$

 M in state q_i \quad M in state $q_j = q_i$

- If more copies of y are inserted, M “can’t tell the difference,” i.e., the state entering y is the same as the state leaving it.

- So since $xyz \in L$, then $xy^n z \in L$ for all n.
Pumping, continued

Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

\[
\begin{array}{ccc}
 x & y & z \\
 M \text{ in state } q_i & M \text{ in state } q_j = q_i \\
\end{array}
\]

If more copies of y are inserted, M “can’t tell the difference,” i.e., the state entering y is the same as the state leaving it.

So since $xyz \in L$, then $xy^n z \in L$ for all n.

Proof also shows:

We can take $p = \# \text{ states in smallest DFA recognizing } L$.

Can guarantee division $s = xyz$ satisfies $|xy| \leq p$ (or $|yz| \leq p$).
Pumping Lemma Example

Consider

\[L = \{ x : x \text{ has an even } \# \text{ of } a's \text{ and an odd } \# \text{ of } b's \} \]

Since \(L \) is regular, pumping lemma holds.
(i.e., every sufficiently long string \(s \) in \(L \) is “pumpable”)

For example, if \(s = aab \), we can write \(x = \varepsilon \), \(y = aa \), and \(z = b \).
Pumping the even a’s, odd b’s language

Claim: L satisfies pumping lemma with pumping length $p = 4$.

Proof:

Consider any string s of length at least 4, and write $s = tu$ where $|t| = 4$.

- **Case 1:** t has an even number of a’s and an even number of b’s. Then we can set $x = \epsilon$, $y = t$, $z = u$.
- **Case 2:** t has 3 a’s and 1 b. Then we can set $y = aa$.
- **Case 3:** t has 3 b’s and 1 a. Then we can set $y = bb$.

So L satisfies the pumping lemma with pumping length $p = 4$.

Q: Can the Pumping Lemma be used to prove that L is regular? That is, does "Pumpable" \Rightarrow Regular?
Pumping the even a’s, odd b’s language

Claim: L satisfies pumping lemma with pumping length $p = 4$.

Proof:

Consider any string s of length at least 4, and write $s = tu$ where $|t| = 4$

- **Case 1:** t has an even number of a’s and an even number of b’s. Then we can set $x = \varepsilon, y = t, z = u$.

- **Case 2:** t has 3 a’s and 1 b. Then we can set $y = aa$.

- **Case 3:** t has 3 b’s and 1 a. Then we can set $y = bb$.

- **So** L satisfies the pumping lemma with pumping length $p = 4$.

Q: Can the Pumping Lemma be used to prove that L is regular? That is, does “Pumpable” \Rightarrow Regular?
Use PL to Show Languages are NOT Regular

Claim: \(L = \{a^n b^n : n \geq 0\} = \{\varepsilon, ab, aabb, aaabbb, \ldots\} \) is not regular.

Proof by contradiction:

- Suppose that \(L \) is regular.
- So \(L \) has some pumping length \(p > 0 \).
- Consider the string \(s = a^p b^p \). Since \(|s| = 2p > p\), we can write \(s = xyz \) for some strings \(x, y, z \) as specified by the lemma.
- Claim: No matter how \(s \) is partitioned into \(xyz \) with \(y \neq \varepsilon \), we have \(xy^2z \notin L \).
- This violates the conclusion of the pumping lemma, so our assumption that \(L \) is regular must have been false.
Strings of exponential lengths are a nonregular language

Claim: \(L = \{ w : |w| = 2^n \text{ for some } n \geq 0 \} \) is not regular.

Proof:
Strings of exponential lengths are a nonregular language

Claim: \(L = \{ w : |w| = 2^n \text{ for some } n \geq 0 \} \) is not regular.

Proof:

- Suppose \(L \) satisfies the pumping lemma with pumping length \(p \).
- Choose any string \(s \in L \) of length greater than \(p \), say \(|s| = 2^n \).
 By pumping lemma, write \(s = xyz \).
- Let \(|y| = k \). Then \(2^n - k, 2^n, 2^n + k, 2^n + 2 \cdot k, \ldots \) are all powers of two.
- This is impossible. QED.
Claim: \(L = \{ w : w \text{ has the same number of } a\text{'s and } b\text{'s} \} \) is not regular.

Proof #1:

- Use pumping lemma on \(s = a^p b^p \) with \(|xy| \leq p\) condition.
Claim: $L = \{ w : w \text{ has the same number of } a\text{’s and } b\text{’s} \}$ is not regular.

Proof #1:

▶ Use pumping lemma on $s = a^p b^p$ with $|xy| \leq p$ condition.

Proof #2:

▶ If L were regular, then $L \cap a^* b^*$ would also be regular.
Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- \(\{x : x \in L_1 \text{ and } x \notin L_2\} \), \(L_1 \) and \(L_2 \) are both regular
- A subset of a regular language
What Happens During the Transformations?

- NFA \rightarrow DFA
- DFA \rightarrow Regular Expression
- Regular Expression \rightarrow NFA
Minimizing DFAs

Many different DFAs accept the same language. But there is a smallest one—and we can find it!

1. Let M be a DFA
2. Say that states p, q of M are **distinguishable** if there is a string w such that exactly one of $\delta^*(p, w)$ and $\delta^*(q, w)$ is final.
3. Start by dividing the states of M into two equivalence classes: the final and non-final states.
Minimizing DFAs, continued

- Break up the equivalence classes according to this rule: If \(p, q \) are in the same equivalence class but \(\delta(p, \sigma) \) and \(\delta(q, \sigma) \) are not equivalent for some \(\sigma \in \Sigma \), then \(p \) and \(q \) must be separated into different equivalence classes.

- When all the states that must be separated have been found, form a new and finer equivalence relation.

- Repeat.

- How do we know that this process stops?