Computational Theory

Computability

Dr Russ Ross

Dixie State University—Computer and Information Technologies

Fall 2016

Adapted from notes by Harry Lewis
Reading: Sipser §3.1.
Objective: Define a computational model that is

- **General-purpose:**
 (as powerful as programming languages)

- **Formally Simple:**
 (we can prove what **cannot** be computed)
The Origins of Computer Science

Alan Mathison Turing

“On Computable Numbers, with an Application to the Entscheidungsproblem” 1936

CF also

- David Hilbert
 “Mathematical Problems” 1900

- Kurt Gödel
 “On Formally Undecidable Propositions . . .” 1931

- Alonzo Church
 “An Unsolvable Problem of Elementary Number Theory” 1936
The Basic Turing Machine

- Head can both read and write, and move in both directions
- Tape has unbounded length
- □ is the blank symbol. All but a finite number of tape squares are blank.
A (deterministic) **Turing Machine (TM)** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states, containing
 - the **start state** q_0
 - the **accept state** q_{accept}
 - the **reject state** q_{reject} ($\neq q_{\text{accept}}$)

- Σ is the **input alphabet**

- Γ is the **tape alphabet**
 - Contains Σ
 - Contains “blank” symbol $\sqcup \in \Gamma - \Sigma$
The transition function

\[Q \times \Gamma \rightarrow Q \times \Gamma \times \{ L, R \} \]

- \(L \) and \(R \) are “move left” and “move right”
- \(\delta(q, \sigma) = (q', \sigma', R) \)
 - Rewrite \(\sigma \) as \(\sigma' \) in current cell
 - Switch from state \(q \) to state \(q' \)
 - And move right
- \(\delta(q, \sigma) = (q', \sigma', L) \)
 - Same, but move left
 - \textit{Unless} at left end of tape, in which case stay put
Computation of TMs

- **A configuration** is uqv, where $q \in Q$, $u, v \in \Gamma^*$.
 - Tape contents $= uv$ followed by all blanks
 - State $= q$
 - Head on first symbol of v.
 - Equivalent to uqv', where $v' = vq$.

- Start configuration $= q_0w$, where w is input.

- One step of computation:
 - $uq\sigma v$ yields $u\sigma'q'v$ if $\delta(q, \sigma) = (q', \sigma', R)$.
 - $u\tau q\sigma v$ yields $uq'\tau \sigma' v$ if $\delta(q, \sigma) = (q', \sigma', L)$.
 - $q\sigma v$ yields $q'\sigma'v$ if $\delta(q, \sigma) = (q', \sigma', L)$.

- If $q \in \{q_{accept}, q_{reject}\}$, computation halts.
TMs and Language Membership

- M **accepts** w if there is a sequence of configurations C_1, \ldots, C_k such that

 1. $C_1 = q_0 w$.
 2. C_i yields C_{i+1} for each i.
 3. C_k is an accepting configuration (i.e. state of M is q_{accept}).

- $L(M) = \{ w : M$ accepts $w \}$.

- L is **Turing-recognizable** if $L = L(M)$ for some TM M, i.e.

 - $w \in L \Rightarrow M$ halts on w in state q_{accept}.
 - $w \notin L \Rightarrow M$ halts on w in state q_{reject} OR M never halts (it “loops”).
Decidability, a.k.a. Recursiveness

- L is *(Turing-)decidable* if there is a TM M s.t.
 - $w \in L \Rightarrow M$ halts on w in state q_{accept}.
 - $w \notin L \Rightarrow M$ halts on w in state q_{reject}.

- Other common terminology
 - Recursive = decidable
 - Recursively enumerable (r.e.) = Turing-recognizable
 - Because of alternate characterizations as sets that can be defined via certain systems of recursive (self-referential) equations.
Example

Claim: \(L = \{ a^n b^n c^n : n \geq 0 \} \) is decidable.
Turing Machines

Questions

▶ Does every TM recognize some language?
▶ Does every TM decide some language?
▶ How many Turing-recognizable languages are there?
▶ How many decidable languages are there?
The Church-Turing Thesis

Reading: Sipser §3.2, §3.3.
“Computability”

- Defined in terms of Turing machines
- Computable = recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are constructive
TM Extensions That Do Not Increase Its Power

- TMs with a 2-way infinite tape, unbounded to left and right

\[
\ldots \quad \square \quad a \quad b \quad a \quad a \quad \ldots
\]

Proof that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety.

"Simulation." Convert any 2-way infinite TM into an equivalent 1-way infinite TM with a "two-track tape."

\[
\begin{array}{cccccc}
\cdots & c & b & a & \square & b & a & \square & b & a & a & \cdots \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}
\]

Tape of 2-way infinite TM \(M \)

\[
\begin{array}{c}
b \\
\downarrow \\
a
\end{array} = \langle b, a \rangle
\]

Corresponding tape of 1-way infinite TM \(M' \)
Recall the Formal Definition of a TM:

A (deterministic) **Turing Machine (TM)** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states, containing
 - the **start state** q_0
 - the **accept state** q_{accept}
 - the **reject state** q_{reject} ($\neq q_{\text{accept}}$)
- Σ is the **input alphabet**
- Γ is the **tape alphabet**
 - Contains Σ
 - Contains “blank” symbol $\sqcup \in \Gamma - \Sigma$
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the **transition function**.
Formalizing the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$.

M' includes, for every state q of M, **two** states:

- $\langle q, 1 \rangle \sim \text{“}q\text{, but we are working on upper track”}$
- $\langle q, 2 \rangle \sim \text{“}q\text{, but we are working on lower track”}$

e.g. If $\delta_M(q, \sigma) = (q', \sigma', L)$ then $\delta_{M'}(\langle q, 1 \rangle, \langle \sigma, \tau \rangle) = (\langle q', 1 \rangle, \langle \sigma', \tau \rangle, R)$.

Also need transitions for:

- Lower track
- U-turn on hitting endmarker
- Formatting input into “2-tracks”
Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- This lecture, some of next lecture, assignment 6

High-Level Description

- Does not refer to specific computational model
- Starting next time!
More extensions

- Adding **multiple tapes** does not increase power of TMs

(CoConvention: First tape used for I/O, like standard TM; Second tape is available for scratch work)
Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into $2k$ tracks:
 - k tracks for tape symbols
 - k tracks for head position position markers (one in each track)

(Sipser does a different simulation.)
Simulation steps

- To simulate **one move** of the k-tape TM:
Simulation steps

- To simulate **one move** of the k-tape TM:
 - Start with the head on the left endmarker
 - Scan down the tape, remembering in the finite control the symbols “scanned” by the k heads
 - Scan back up the tape, revising each track in the vicinity of its head marker
 - Return the head to the left endmarker
Note that the “equivalence” in ability to compute functions or decide languages does not mean comparable speed.

- e.g. A standard TM can decide $L = \{w\#w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a linear-time 2-tape decider.
The Church-Turing Thesis

Multiple Tapes

Speed of the simulation

- Note that the “equivalence” in ability to compute functions or decide languages does not mean comparable speed.

 e.g. A standard TM can decide $L = \{w\#w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a linear-time 2-tape decider.

- Let $T_M : \Sigma^* \rightarrow \mathbb{N}$ measure the amount of time a decider M uses on an input. That is, $T_M(w)$ is the number of steps TM M takes to halt on input w.

- General fact about multitape to single-tape slowdown:

 Theorem: If M is a multitape TM that takes time $T(w)$ when run on input w, then there is a 1-tape machine M' and a constant c such that M' simulates M and takes at most $cT(w)^2$ steps on input w.
Nondeterministic TMs

- Like TMs, but $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- It mainly makes sense to think of NTMs as **recognizers**

$$L(M) = \{w : M \text{ has some accepting computation on input } w\}$$

Example: NTM to recognize

$$\{w : w \text{ is a binary notation for a product of two integers } \geq 2\}$$
Nondeterministic TMs

- Like TMs, but \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \)
- It mainly makes sense to think of NTMs as **recognizers**

\[
L(M) = \{ w : M \text{ has some accepting computation on input } w \}
\]

Example: NTM to recognize
\(\{ w : w \text{ is a binary notation for a product of two integers } \geq 2 \} \)

1. Write any binary numeral (except 0 or 1) [N.D.]
2. Write \(\sqcup \)
3. Write any binary numeral (except 0 or 1) [N.D.]
4. Multiply
5. Compare product to the input; halt if they are equal, go into an infinite loop if not.
NTMs recognize the same languages as TMs

- Given a NTM M, we must construct a TM M' that determines, on input w, whether M has an accepting computation on input w.
- M' systematically tries
 - all one-step computations
 - all two-step computations
 - all three-step computations
 - ...
Enumerating computations

- There is a bounded number of k-step computations, for each k.
 (because for each configuration there is only a constant number of “next” configurations in one step)

- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,
 or
 - searches forever, and does not halt
In More Detail

- Suppose that the maximum number of different transitions for a given \((q, \sigma)\) is \(b\).
- Number those transitions 1, \ldots, \(b\) (or less)
- Any computation of \(k\) steps is determined by a sequence of \(k\) numbers \(\leq b\) (the “nondeterministic choices”).
- How \(M’\) works: 3 tapes
 - #1: Original input to \(M\)
 - #2: Simulated tape of \(M\)
 - #3: 1213 \(\square\) \(\ldots\) Nondeterministic choices for \(M’\)
Simulating one step of M

- Each major phase of the simulation by M' is to simulate one finite computation by M, using tape #3 to resolve nondeterministic ambiguities.

- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, b\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.

- **Claim:** $L(M') = L(M)$

- **Q:** Slowdown?
Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church’s λ-calculus (μ-recursive functions)
- Markov algorithms
- Your favorite high-level programming language (C, Lisp, Java, . . .)
- . . .
General Grammars

- Like context-free grammars, except that if \(u \rightarrow v \) is a rule, then \(u \) may be any string containing a nonterminal.

- So the rule \(AXY \rightarrow AYX \) where \(A, X, Y \in V \), “means” that the two-symbol substring \(XY \) can be replaced by \(YX \) whenever it appears with an \(A \) to its left.
A grammar to generate \(\{ a^n b^n c^n : n \geq 0 \} \).

\[\Sigma = \{ a, b, c \} \quad V = \{ A, B, C, A', B', C', S \} \]

- \(A, B, C \) are “aliases” for the terminal symbols \(a, b, c \).
- Only a single occurrence of \(A', B', \) or \(C' \) can be in the string being derived.
- It “crawls” from right to left, transforming nonterminal symbols into terminals.
Rules for $a^n b^n c^n$

- $S \rightarrow ABCS$
 $S \rightarrow C'$
 $S \rightarrow \varepsilon$

 (Thus $S \Rightarrow^* (ABC')^n C'$ for any $n \geq 0$)

- $CA \rightarrow AC$
 $BA \rightarrow AB$
 $CB \rightarrow BC$

 (Any inversions of the proper order can be repaired)

- $CC' \rightarrow C' c$
 $CC' \rightarrow B' c$

 (The c-transformer can crawl to the left, and turn into a b-transformer)

- $BB' \rightarrow B' b$
 $BB' \rightarrow A' b$

- $AA' \rightarrow A' a$
 $A' \rightarrow \varepsilon$

The only way to get a string of terminals yields one of the form $a^n b^n c^n$.

Dr Russ Ross (Dixie State University)
CS 3530
Fall 2016
31 / 53
Theorem: A language is generated by a grammar if and only if it is Turing-recognizable.

Proof:

1. L is generated by a grammar $\Rightarrow L$ is Turing-recognizable

 Pf: Let $L = L(G)$, G a grammar. To construct a NTM M such that $L(M) = L$, construct M so that
 M nondeterministically carries out a derivation
 $S = w_0 \Rightarrow G w_1 \Rightarrow G w_2 \Rightarrow G \cdots$, checking each step to see if
 $w_i = w$.

L Turing-recognizable \Rightarrow L is generated by a grammar.

2. L is recognized by a TM M \Rightarrow L is generated by a grammar G

Pf: Without loss of generality, we assume that if M halts having started on input w, right before halting it erases its tape. G will simulate a **backwards computation** by M. The intermediate strings will be configurations $uq\sigma v$.
Rules of the Grammar

- $S \rightarrow \$ q_{\text{accept}}$

- If $\delta(q, \sigma) = (q', \sigma', R)$, then G has

 $\sigma' q' \rightarrow q \sigma$

 $\sigma' q' \$ \rightarrow q \$, if $\sigma = \$\$

- If $\delta(q, \sigma) = (q', \sigma', L)$, then G has

 $q' \tau \sigma' \rightarrow \tau q \sigma$ for each $\tau \in \Sigma$

 $q' \tau \$ \rightarrow \tau q \sigma \$, if $\sigma' = \$$

 $\$ q' \sigma' \rightarrow \$ q \sigma$

- Finally, $\$ \rightarrow \varepsilon$ and, if q_0 is the start state of the TM, $q_0 \rightarrow \varepsilon$
A 2-counter machine (2-CM) has:

- A finite-state control
- Two counters, i.e., C_1 and C_2, which are registers containing integers ≥ 0 with only 3 operations:
 - Add 1 to C_1/C_2
 - Subtract 1 from C_1/C_2
 - Is $C_1/C_2 = 0$?

Theorem: For any TM, there is an equivalent 2-CM, in the sense that if you start the 2-CM with an encoding of the TM tape in its counters it will eventually halt with an encoding of what the TM computes.
Simulating a TM tape with 2 pushdown stores:
Split the tape at the head position into two stacks

Moving TM head to left \equiv Pop from stack #1
 \quad Push onto stack #2

Moving TM head to right \equiv Pop from stack #2
 \quad Push onto stack #1

Change scanned symbol \equiv Change top of stack #1

(So 2-PDSs are as powerful as TMs)
Simulating One Stack with Two Counters: Think of the stack as a number in a base $= |\Sigma| + 1$

[Assume ≤ 9 stack symbols]

- Pop the stack \equiv Divide by 10 and discard the remainder
- Push a_9 \equiv Multiply by 10 and add 9
- Is stack top $= a_3$? \equiv Is counter mod 10 $= 3$?

→ All of these can be calculated using a second counter.
Simulating Four Counters With Two:

\[(p, q, r, s) \rightarrow 2^p 3^q 5^r 7^s\]

Add 1 to \(C1\)
\[\equiv \quad p \leftarrow p + 1\]
\[\equiv \quad \text{Double } C1'\]

Is \(C3 \neq 0\)?
\[\equiv \quad r \neq 0?\]
\[\equiv \quad \text{Does } 5 \text{ divide } C1' \text{ evenly?}\]

Subtract 1 from \(s\)
\[\equiv \quad \text{Divide } C1' \text{ by } 7\]
The equivalence of each to the others is a mathematical *theorem*. That these *formal models* of algorithms capture our *intuitive notion* of algorithms is the **Church-Turing Thesis**.

(Church’s thesis = partial recursive functions, Turing’s thesis = Turing machines)

This is an extramathematical proposition, not subject to formal proof.
Reading: Sipser §4.1.
Def: A TM M **enumerates** a language L if M, when started from a blank tape, runs forever and “emits” all and only the strings in L. (For example, by writing the string on a special tape and passing through a designated state.)
Recognizable \equiv enumerable

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

(\Rightarrow) Suppose $L(M) = L$. We want to construct a TM M' that enumerates L.

M' dovetails all of the computations by M:

1. Do 1 step of M's computation on w_0
2. Do 2 steps of M on w_0 and w_1
3. Do 3 steps on each of w_0, w_1, w_2

where w_0, w_1, \ldots = lexicographic enumeration of Σ^*.

Outputting any strings w_i whose computations have accepted.
(⇐) Conversely, suppose M enumerates L. We want to show that L is RE.

Given w, run M on the blank tape. Every time M passes through state q (the “enumeration state”) pause to see if w is on the output tape and halt if it is.

The language **recognized** by this algorithm is exactly the language **enumerated** by M. QED.

- The Turing-decidable sets are usually called **recursive** because they can be computed using certain systems of recursive equations, rather than via TMs.

- The Turing-recognizable sets are usually called **recursively enumerable**, i.e., “computably enumerable.”
Enumerable in order \equiv decidability

Theorem: L is decidable iff L is enumerable in lexicographic order.

(lexicographic order has shorter strings before longer, and alphabetic order among strings of the same length)

Proof of \Rightarrow: If L is decidable, then to enumerate L in order, generate all of Σ^* in order and test each string for membership in L, enumerating those that are members.

Almost proof of \Leftarrow: to test if $w \in L$, enumerate L and wait until either w or a lexically later string is enumerated. ????
Recall that a language $L \subseteq \Sigma^*$ is decidable if there is a TM that always halts when started on an input in Σ^*, in either q_{accept} if $w \in L$ or q_{reject} if $w \notin L$.

Proposition: Every regular language is decidable.

Proof: (By “coding” a DFA as a TM.)
Asking questions about arbitrary finite automata

- **Q:** What if the DFA D is part of the input? That is, can we design a single TM that, given two inputs, D and w, decides whether D accepts w?

 - The TM needs to use a fixed alphabet & state set for all inputs D, w.

Q: How to represent $D = (Q, \Sigma_D, \delta, q_0, F)$ and w? List each component of the 5-tuple, separated by |’s.

 - Represent elements of Q as binary strings over $\{0, 1\}$, seperated by ,’s.
 - Represent elements of Σ_D as binary strings over $\{0, 1\}$, seperated by ,’s.
 - Represent $\delta : Q \times \Sigma_D \rightarrow Q$ as a sequence of triples (q, σ, q'), separated by ,’s, etc.

We denote the encoding of D and w as $\langle D, w \rangle$.
A “Universal” algorithm for deciding regular languages

Proposition: \(A_{\text{DFA}} = \{ \langle D, w \rangle : D \text{ a DFA that accepts } w \} \) is decidable.

Proof sketch:

- First check that input is of proper form.
- Then simulate \(D \) on \(w \). Implementation on a multitape TM:
 - Tape 2: String \(w \) with head at current position (or to be precise, its representation).
 - Tape 3: Current state \(q \) of \(D \) (i.e., its representation).

- Could work with other encodings, e.g., transition function as a matrix rather than list of triples.
Representation independence

- **General point:** Notions of computability (e.g. decidability and recognizability) are independent of data representation.
 - A TM can convert any reasonable encoding to any other reasonable encoding.
 - We will use \langle \cdot \rangle to mean “any reasonable encoding”.
 - We will revisit representation issues when we discuss computational **speed**.
 - For the moment we are interested only in whether problems are decidable, undecidable, recognizable, etc., so we can be content knowing that there is **some** representation on which an algorithm could work.
Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- Previous lecture and today’s lecture so far

High-Level Description

- Does not refer to specific computational model, data representation
- From now on!
More Decidable Problems

- $\{\langle R, w \rangle : R$ is a regular expression that generates $w \}$.
- $\{\langle X \rangle : X$ is a DFA/NFA/RE such that $L(X) = \emptyset \}$.
- $\{\langle X \rangle : X$ is a DFA/NFA/RE such that $|L(X)| = \infty \}$.
- $\{\langle M, w \rangle : M$ is a PDA that accepts $w \}$.
- Every context-free language.
A Universal Turing machine

Theorem: There is a Turing machine U, such that when U is given $\langle M, w \rangle$ for any TM M and w, U produces the same result (accept/reject/loop) as running M on w.

Proof: Initially,
- First tape contains $\langle M \rangle$, including in particular its transition function δ_M.
- Second tape contains $\langle w \rangle$.
- Third tape contains $\langle q_{start} \rangle$.
- Simulate steps of M by multiple steps of U.

(Brief return to implementation description.)

\Rightarrow Turing machines can be “programmed”.
Consequences of the existence of Universal Turing Machines

▶ **Corollary:** $A_{TM} = \{ \langle M, w \rangle : M \text{ accepts } w \}$ is Turing-recognizable (r.e.).

▶ **Corollary:** $HALT_{TM} = \{ \langle M, w \rangle : M \text{ eventually halts on } w \}$ (“The Halting Problem”) is Turing-recognizable.

▶ **Corollary:** “The Turing Machines that halt on some input are an r.e. set” (What does this mean?)

▶ **Q:** What about $\{ \langle M, w, n \rangle : M \text{ halts on } w \text{ in at most } n \text{ steps} \}$?

▶ **Q:** Are these sets decidable?

▶ **Q:** Are there undecidable languages?
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

 Proof:
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

 Proof:
 If M decides L, then a machine can recognize L by running M, and then going into an infinite loop if M would have halted in the q_{reject} state.

2. If L is recursive then so is \overline{L}.

 Proof:
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

 Proof:

 If M decides L, then a machine can recognize L by running M, and then going into an infinite loop if M would have halted in the q_{reject} state.

2. If L is recursive then so is \overline{L}.

 Proof:

 A machine can decide \overline{L} by running M and then giving a “no” answer when M would give “yes” and vice versa.

3. L is recursive if and only if both L and \overline{L} are r.e.

 Proof:

 ...