
CS	3520—Forth	Missionaries	and	Cannibals
Write	a	solver	for	the	missionaries	and	cannibals	problem	in	Forth.	For	review,	here	is	the	problem:

Suppose	there	are	three	missionaries	and	three	cannibals	who	need	to	cross	to	the	far	side	of	a
river	using	a	single	boat	that	can	carry	one	or	two	people	at	a	time.	Both	groups	will	cooperate
and	can	paddle	back	and	forth	freely,	but	old	habits	will	lead	the	cannibals	to	eat	the	missionaries
if	the	missionaries	are	ever	outnumbered	on	either	side	of	the	river.

The	problem	is	to	find	a	way	to	get	all	of	the	missionaries	and	all	of	the	cannibals	safely	across
the	river.

You	may	write	it	in	a	different	way	than	what	is	suggested	below,	but	it	must	implement	a	depth-first	or
breadth-first	search	to	find	the	answer.

General	tips
Carefully	test	each	word	you	write	before	moving	on.	The	design	suggested	here	makes	it	straightforward	to
test	most	words	in	isolation,	but	some	require	a	bit	more	work	to	test.

If	a	word	does	not	work,	carefully	track	its	use	of	the	stack.	Break	each	and	every	word	onto	its	own	line,
and	document	the	state	of	the	stack	after	that	line.	For	example,	you	could	rewrite	this	word:

\	check	if	a	number	is	a	member	of	the	used	set
:	isused	(n	--	bool)
				\	loop	through	all	set	elements
				usedcounter	@	0	?do
								\	compare	n	with	elt	i
								dup	used	i	cells	+	@
								\	return	true	if	its	a	match
								=	if	drop	-1	unloop	exit	then
				loop
				\	return	false
				drop	0
;

to	be	like	this:

\	check	if	a	number	is	a	member	of	the	used	set
:	isused	(n	--	bool)
				\loop	through	all	set	elements
				usedcounter																									(n	&usedcounter)
				@																																			(n	usedcounter)
				0																																			(n	usedcounter	0)
				?do																																	(n)
								\	compare	n	with	elt	i
								dup																													(n	n)
								used																												(n	n	&used)
								i																															(n	n	&used	i)
								cells																											(n	n	&used	i*8)
								+																															(n	n	&used[i])
								@																															(n	n	used[i])
								\	return	true	if	its	a	match
								=																															(n	n==used[i])
								if																														(n)
												drop																								()
												-1																										(true)
												unloop																						(true)
												exit																								(true)
								then																												(n)
				loop																																(n)
				\	return	false
				drop																																()
				0																																			(false)
;

If	you	are	meticulous	about	documenting	how	the	stack	is	used,	it	is	much	easier	to	catch	low-level	mistakes.

It	can	make	it	harder	to	read	and	follow	the	higher-level	flow	of	the	word,	however,	so	use	this	technique
judiciously.	For	example,	you	might	write	a	word	this	way,	test	it,	and	then	convert	it	into	the	first	version
(shown	above)	once	you	are	confident	that	it	is	correct.

Overview
I	suggest	representing	states	in	two	ways:

Store	three	values	on	the	stack	for	a	single	state:	near,	m,	and	c.	near	is	true	if	the	boat	is	on	the	near
side	of	the	river.	m	and	c	are	the	number	of	missionaries	and	cannibals	on	the	near	side	of	the	river,
respectively.

Store	all	three	values	in	a	single	integer.	This	is	the	“packed”	format.	While	less	convenient	to	work
with,	this	format	makes	it	easier	to	store	states	in	stacks	and	sets.

The	overall	flow	of	the	program	will	follow	this	pseudo-code:

push	the	start	state	on	the	candidate	stack
search:

print	the	candidate	stack
pop	a	candidate	state	off	the	candidate	stack
push	a	copy	on	the	bread-crumb	trail	stack
if	it	is	the	goal	state

print	out	the	contents	of	the	bread-crumb	trail	in	order.	this	is	the	solution	to	the	puzzle.
else

generate	a	list	of	successor	states	(there	should	be	exactly	5)
push	the	valid,	legal,	fresh	successors	on	the	candidate	stack
for	each	successor	generated	in	this	step:

call	search	recursively
pop	the	state	off	the	bread-crumb	trail	stack

I	suggest	writing	lots	of	helper	words.	Avoid	complexity	in	the	search	word,	since	it	will	already	be	the	most
difficult	part	to	test.	What	follows	is	one	suggested	implementation.	You	are	free	to	write	it	a	different	way	if
you	would	prefer.

Implementation
Start	by	writing	some	helper	words.	The	first	few	are	described	adequately	by	their	names	and	stack-effect
comments:

:	3dup	(x	y	z	--	x	y	z	x	y	z)	...	;
:	3drop	(x	y	z	--)	...	;
:	pack	(near	m	c	--	packedstate)	...	;
:	unpack	(packedstate	--	near	m	c)	...	;
:	printstate	(side	m	c	--)	...	;

Write	each	of	these	and	test	them	thoroughly.	To	load	code	from	a	source	file,	give	the	name	of	the	source
file	when	loading	gforth:

gforth	missionaries.fs

Next,	implement	basic	stack	and	set	data	structures:

\	test	if	n	is	in	the	used	set
:	isused	(n	--	bool)	...	;

\	add	n	to	the	used	set
:	addused	(n	--)	...	;

\	push	a	value	on	the	candidate	stack
:	pushcandidate	(n	--)	...	;

\	pop	a	value	off	the	candidate	stack
:	popcandidate	(--	n)	...	;

\	push	a	value	on	the	bread	crumb	trail	stack
:	pushcrumb	(n	--)	...	;

\	pop	a	value	off	the	bread	crumb	trail	stack
:	popcrumb	(--	n)	...	;

For	debugging,	I	suggest	writing	words	to	print	out	the	entire	contents	of	each	of	these	data	structures:

\	print	the	contents	of	the	used	set	in	order
:	printused	(--)	...	;

\	print	the	contents	of	the	candidate	stack	in	order
:	printcandidates	(--)	...	;

\	print	the	contents	of	the	bread	crumb	trail	in	order
:	printcrumbs	(--)	...	;

Next,	start	the	words	to	work	with	states:

\	push	the	starting	state	onto	the	stack
:	startstate	(--	near	m	c)	...	;

\	test	if	the	state	on	the	stack	is	the	goal	state
:	isgoal	(near	m	c	--	bool)	...	;

\	test	if	the	state	on	the	stack	is	valid	and	legal
:	isvalid	(near	m	c	--	bool)	...	;

The	next	two	generate,	record,	and	report	on	potential	next	moves	from	a	given	state:

\	add	a	state	to	the	candidate	stack	if	it	is	valid	and	new
\	report	on	the	outcome:	invalid,	repeat,	or	fresh
:	addcandidate	(near	m	c	--)	...	;

\	find	all	successor	candidates	for	the	given	state,	push	them	on	stack
\	leaves	the	number	of	states	added	on	the	stack
:	successors	(near	m	c	--	n)

addcandidate 	requires	a	bit	more	explanation.	It	should:

check	if	the	(packed)	state	is	valid	(reject	it	and	print	a	message	if	not)
check	if	the	(packed)	state	is	already	used	(reject	it	and	print	a	message	if	not)
otherwise:

print	a	message	indicating	that	it	is	a	fresh	state
add	the	packed	state	to	the	used	list
add	the	packed	state	to	the	candidate	stack

addcandidate 	is	a	helper	for	 successors ,	which	generates	all	(5)	possible	successors	for	a	given	state,
handing	each	one	to	 addcandidate ,	which	filters	some	of	them	out	and	adds	the	rest	to	the	candidate	stack.

Then	comes	the	main	search	loop:

\	find	the	solution	from	position	at	top	of	stack
:	search	(--)

search 	assumes	that	a	state	is	already	on	the	candidate	stack,	and	it	uses	the	words	already	described	to
implement	the	pseudo-code	given	earlier.	For	a	word	to	call	itself	recursively,	it	uses	the	special	word
recurse 	instead	of	the	normal	word	name	(search 	in	this	case).

Finally,	write	a	 start 	word	that	resets	the	stacks	and	the	used	set,	puts	the	start	state	on	the	candidate
stack,	adds	it	to	the	used	set,	and	calls	 search .

Example
Here	is	the	output	of	my	solution:

$	gforth	missionaries.fs	
redefined	search		Gforth	0.7.2,	Copyright	(C)	1995-2008	Free	Software	Foundation,	Inc.
Gforth	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type	`license'
Type	`bye'	to	exit
start	

candidates:
[near	3	3]
fresh			[far	3	2]
fresh			[far	3	1]
fresh			[far	2	2]
invalid	[far	2	3]
invalid	[far	1	3]

candidates:
[far	3	2]
[far	3	1]
[far	2	2]
invalid	[near	2	3]
invalid	[near	2	4]
repeat		[near	3	3]
fresh			[near	3	2]
invalid	[near	4	2]

candidates:
[far	3	2]
[far	3	1]
[near	3	2]
repeat		[far	3	1]
fresh			[far	3	0]
invalid	[far	2	1]
repeat		[far	2	2]
invalid	[far	1	2]

candidates:
[far	3	2]
[far	3	1]
[far	3	0]
fresh			[near	3	1]
repeat		[near	3	2]
invalid	[near	4	1]
invalid	[near	4	0]
invalid	[near	5	0]

candidates:
[far	3	2]
[far	3	1]
[near	3	1]
repeat		[far	3	0]
invalid	[far	3	-1]
invalid	[far	2	0]
invalid	[far	2	1]
fresh			[far	1	1]

candidates:
[far	3	2]
[far	3	1]
[far	1	1]
invalid	[near	1	2]
invalid	[near	1	3]
fresh			[near	2	2]
invalid	[near	2	1]
repeat		[near	3	1]

candidates:
[far	3	2]
[far	3	1]
[near	2	2]
invalid	[far	2	1]
invalid	[far	2	0]
repeat		[far	1	1]
invalid	[far	1	2]
fresh			[far	0	2]

candidates:
[far	3	2]
[far	3	1]
[far	0	2]
fresh			[near	0	3]
invalid	[near	0	4]

invalid	[near	1	3]
invalid	[near	1	2]
repeat		[near	2	2]

candidates:
[far	3	2]
[far	3	1]
[near	0	3]
repeat		[far	0	2]
fresh			[far	0	1]
invalid	[far	-1	2]
invalid	[far	-1	3]
invalid	[far	-2	3]

candidates:
[far	3	2]
[far	3	1]
[far	0	1]
fresh			[near	0	2]
repeat		[near	0	3]
invalid	[near	1	2]
fresh			[near	1	1]
invalid	[near	2	1]

candidates:
[far	3	2]
[far	3	1]
[near	0	2]
[near	1	1]
invalid	[far	1	0]
invalid	[far	1	-1]
fresh			[far	0	0]
repeat		[far	0	1]
invalid	[far	-1	1]

candidates:
[far	3	2]
[far	3	1]
[near	0	2]
[far	0	0]

solution	found

[near	3	3]
[far	2	2]
[near	3	2]
[far	3	0]
[near	3	1]
[far	1	1]
[near	2	2]
[far	0	2]
[near	0	3]
[far	0	1]
[near	1	1]
[far	0	0]
backtracking
backtracking

candidates:
[far	3	2]
[far	3	1]
[near	0	2]
repeat		[far	0	1]
repeat		[far	0	0]
invalid	[far	-1	1]
invalid	[far	-1	2]
invalid	[far	-2	2]
backtracking
backtracking
backtracking
backtracking
backtracking
backtracking
backtracking

backtracking
backtracking
backtracking

candidates:
[far	3	2]
[far	3	1]
repeat		[near	3	2]
repeat		[near	3	3]
invalid	[near	4	2]
invalid	[near	4	1]
invalid	[near	5	1]
backtracking

candidates:
[far	3	2]
repeat		[near	3	3]
invalid	[near	3	4]
invalid	[near	4	3]
invalid	[near	4	2]
invalid	[near	5	2]
backtracking
backtracking
	ok

