Shortest Reliable Path Dynamic Programming

Given: Graph \(G = (V, E) \), weights \(\lambda(u,v) \)

Nodes \(s, t \in V \), integer \(k \).

Find: Shortest path from \(s \) to \(t \) that uses no more than \(k \) edges.

Why? Edge transitions or "hops" may have inherent costs not measured in edge weights, e.g., airline customer may not want more than 2 flights to get to destination.

Shortest Reliable Path Dynamic Programming

Algorithm:

for \(u \in V \):
 for \(i = 0, k \):
 \(\text{dist}(u, i) = \infty \)
 \(\text{dist}(s, 0) = 0 \)

for \(i = 1, k \):
 for \((u, v) \in E \):
 if \(\text{dist}(v, i) > \text{dist}(u, i-1) + \lambda(u, v) \):
 \(\text{dist}(v, i) = \text{dist}(u, i-1) + \lambda(u, v) \)

return \(\text{dist}(t, k) \)

Runtime: \(O(k|E|) \)

Shortest Reliable Path Dynamic Programming

Subproblems:

\(\text{dist}(v, i) = \text{shortest distance from } S \text{ to } v \text{ using } \leq i \text{ edges} \)

\(\text{dist}(v, i) = \min \{ \text{dist}(u, i-1) + \lambda(u, v) \} \)

\((u, v) \in E \)