Knap sack with repetition

Given: \(n \) categories of items with weights \(w_1, w_2, \ldots, w_n \) and values \(v_1, v_2, \ldots, v_n \). A knapsack of capacity \(W \).

Find: A collection of items from the categories such that \(\sum v_i \) is maximized while \(\sum w_i \leq W \).

Subproblems: \(K(w) \), maximum value when a smaller bag would be full.

Goal: \(K(W) \), maximum value when bag full.

Initialization: \(K(0) = 0 \)

DAG Edges: \(K(w) = \max_{i: w_i \leq w} \{ K(w-w_i) + v_i \} \)

Linearized order: \(1 \ldots W \)
Knapsack Algorithm

\[k(0) = 0 \]

for \(w = 1 \ldots \text{W} \):

\[k(w) = \max_{i : w_i \leq w} \left\{ k(w - w_i) + v_i \right\} \]

return \(k(\text{W}) \)

\(O(nW) \)

\(2^{\log_2(W)} \)

pseudo-polynomial