Basic Operations: makeset(x) - create new set with 1 element
find(x) - return identifier for the set x belongs to.
union(x, y) - merge the sets that x and y belong to, if they don't belong to the same set.

Arrays:
makeSet(x) - allocates array of length 1, adds to the end of array of sets
find(x) - iterates through array of sets, looking for x, returns index of set that x belongs to
union(x, y) - finds set of x and set of y, allocates array of length len(find(x)) + len(find(y)), copies values from both sets into new array. Replaces one set with the new one, removes the other set.
Data Structures for Disjoint Sets

Runtime of array implementation: n items

$\text{make-set}(x): \ O(1) \quad \text{why?}$

$\text{find}(x): \ O(n) \quad \text{why?}$

$\text{union}(x,y): \ O(n) \quad \text{why?}$

Can we do better?
Data Structures for Disjoint Sets

Directed Trees:
Directed because children have pointers to parent.

Sets 8 4 3, 5 6 8 3, 8 0 E 3 might look like this:

```
  A°  D'  C'
 /    /    /
B°  F°  E°
```

Each item in a set has two data members:
- parent: pointer to parent item. If item is root, points to self.
- rank: number representing the height of the subtree this item is root for.
def make_set(x):
 parent(x) = x
 rank(x) = 0

new set with 1 item, is own root.
height is 0, because no edges.
runtime: O(1)

def find(x):
 if x ≠ parent(x):
 parent(x) = find(parent(x))
 return parent(x)

item, and all ancestors
are now directly connected
to the root.
runtime: O(1)

def union(x, y):
 rx = find(x)
 ry = find(y)

 if rx == ry: return

 if rank(rx) > rank(ry):
 parent(ry) = rx
 else:
 parent(rx) = ry
 if rank(rx) == rank(ry): rank(ry) += 1

find the sets of x and y. if the same, done.
if x's set is taller, merge by making
y's root point to x's root; no height added.
otherwise, make x's root point to y's
root. if the trees were the same
height, the resulting tree is one higher.
runtime: O(find).
Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for x in A-H: makeSet(x)</td>
</tr>
<tr>
<td>2</td>
<td>union(A, E)</td>
</tr>
<tr>
<td>3</td>
<td>union(f, D)</td>
</tr>
<tr>
<td>4</td>
<td>union(E, D)</td>
</tr>
<tr>
<td>5</td>
<td>union(A, B)</td>
</tr>
</tbody>
</table>
Example:

```
for x in A-H:
    makeset(x)

union (A, E)

union (H, D)

union (E, D)

union (A, B)
```
The previous properties of ranks still mostly hold:

- **p1**: if \(x \neq \text{parent}(x) \), then \(\text{rank}(x) < \text{rank}(ext{parent}(x)) \)

- **p2**: for any root node of rank \(k \), there are \(\geq 2^k \) nodes in the tree.

- **p3**: for \(n \) nodes total, at most \(\frac{n}{2^k} \) nodes have rank \(k \).

\[\text{max rank} = O(\log n) \]
Math Notes

\[\log^*(n) \equiv \text{the number of times the log operation must be applied to } n \text{ for the result to be } \leq 1. \]

e.g. \[\log(1000) \approx 9.965, \]
\[\log(9.965) \approx 3.322 \]
\[\log(3.322) \approx 1.732 \]
\[\log(1.732) \approx 0.792 \]

\[= 4 \]

\[\log^*(1000) = 4 \]
Data Structures for Disjoint Sets: Directed Trees, Path Compression.

Amortized Analysis of runtime of find(x), with path compression.

Divide ranks of nodes into these groups:

\[\{13, 23, 33, 43, 5, 6, \ldots, 163, \ 17, 18, \ldots, 65536\}, \ \{65537, \ldots, 2^{65536}\} \]

During the find method, we classify the edges traversed into 2 categories:

1- edges from node to another node in the same log* group.

2- edges from node to node in a higher log* group.

Enter pretend world:
If we ignore category 1, how many edges would we traverse?

What would the runtime of find() be?

What would the runtime be of an algorithm with \(n \) nodes, and \(m \) calls to find()?

Leave pretend world:
Amortized analysis of runtime of find(X), with path compression.

Consider edges of type 1.

What is the maximum number of times that a node in the \(\log^* \) group ending in \(2^k \) will use such an edge, over the lifetime of the algorithm?

What is an easy upper limit on the number of nodes in any \(\log^* \) group?

Can you find a lower, upper limit?

Given the number of nodes in the \(\log^* \) group, and the maximum number of edges within the group per node, how many in-group edges will there be?

How many groups are there?

During the algorithm, what is the maximum number of these edges?
Number of times a node uses in-group edges:
Each time, the rank of the parent increases, and there are $O(2^k)$ ranks, $\Rightarrow O(2^k)$ in-group edges.
Easy upper limit on number in group: $O(n)$

Lower, upper limit:

$$ \leq \frac{n}{2^{k+1}} \text{ with rank } k+1 $$

$$ \leq \frac{n}{2^{k+2}} \text{ with rank } k+2 $$

$$ \vdots $$

$$ \leq \frac{n}{2^k} \text{ with rank } 2^k $$

Total for group $\leq \frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \cdots + \frac{n}{2^k}$

Looking up the bound for this summation: $\leq \frac{n}{2^k}$

$\Rightarrow O\left(\frac{n}{2^k}\right)$
How many in-group edges across the entire group?

per node = \(\mathcal{O}(2^k) \)

of nodes = \(\mathcal{O}(n^{1/k}) \)

Total per group = \(\left(\frac{n}{k} \right) \cdot 2^k = \mathcal{O}(n) \)
How many in-group edges across all groups?

$\log^*(n)$ groups

$O(n)$ per group

$= 0(n \log^*(n))$
Data Structures for Disjoint Sets: Directed Trees with Path Compression

Amortized analysis of \texttt{find}(x) with path compression.

Pulling it together:

\begin{align*}
m \text{ calls to find cause } & \mathcal{O}(m \log^*(n)) \text{ between-group traversals.} \\
& \text{ and } \mathcal{O}(n \log^*(n)) \text{ in-group traversals.}
\end{align*}

Total run time is \(\mathcal{O}((n+m) \log^*(n)) \)

This is better than \(\mathcal{O}(mn \log(n)) \)!