Fermat's Primality Test

The Algorithm

Sample Algorithms

```
function Fermat(N):
    // N is an n-bit number
    a = random n-bit number < N
    z = mod-exponentiation(a, N-1, N)

    if z == 1:
        return True
    return False
```

Correct?

Run time?
Primalty 1

Is N Fermat 1 prime?

$N = 24$
$a = 7$

$N = 29$
$a = 14$
\[z = a^{N-1} \mod N \]

From algorithm,

Assume \(N \) is prime.

Define \(S = \{ 1, 2, 3, \ldots, N-1 \} \)

Define \(S' = \{ a \cdot 1, a \cdot 2, a \cdot 3, \ldots, a \cdot (N-1) \} \mod N \)

Claim \(S = S' \)

Each number in \(S \) is distinct and \(\not= 0 \).

Two numbers from \(S \) \((i, j) \) map to \((i' = a \cdot i, j' = a \cdot j) \) in \(S' \).

If \(i' = j' \), then \(a \cdot i = a \cdot j \mod N \)

Since \(N \) is prime, \(a \) and \(N \) are relatively prime, \(a^i \) exists.

\[a \cdot i = a \cdot j \Rightarrow i \equiv j \mod N \]

So, if \(i' = j' \), then \(i = j \), but \(i \not= j \), so \(i' \not= j' \).

\(\Rightarrow \) All elements of \(S' \) are distinct.

Because no element of \(S \) is 0, and \(a \not= 0 \), no element of \(S' \) is 0.

\[\Rightarrow S = S' \]
Fermat's Primality Test

\[S = \sum_{i=1}^{N-1} a^i \]

\[S' = \sum_{i=1}^{N-1} a^i \equiv a^{N-1} \pmod{N} \]

\[S = S' \]

\[P = \prod_{i \in S} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot N-1 = (N-1)! \]

\[P' = \prod_{i \in S'} i' = a^1 \cdot a^2 \cdot a^3 \cdot \ldots \cdot a^{N-1} = a^{N-1} (N-1)! \pmod{N} \]

Since \(S = S' \), \(P = P' \)

\[(N-1)! \equiv a^{N-1} (N-1)! \pmod{N} \]

Divide by \((N-1)!\)

\[1 \equiv a^{N-1} \pmod{N} \]

This is the test in the algorithm!

\[\Rightarrow \text{Fermat's Little Theorem} \]
Fermat's Primality Test correctness

Correctness assumes N is prime.

What if N is not prime?

Sometimes non-prime numbers still report True.
Fermat's Primality Test Runtime

Generate n-bit number : $O(n)$
Modular Exponentiation : $O(n^3)$
Test for 1 : $O(n)$
Subtract 1 from N : $O(n)$

$O(n^3)$
function Fermat2(N, k): // N is an n-bit number
 // k is a number.
 for i in 1..k:
 a = random n-bit number 0 < a < N
 z = mod-exponentiation(a, N-1, N)
 if z ≠ 1:
 return False
 return True

Correct?

Runtime?
Fermat's Primality Test #2

- The code inside the loop is just Fermat's theorem. A False means not prime. A True means maybe prime. Let's quantify "maybe".

- Hand waving: Except for some rare composite (non-prime) numbers, called Carmichael numbers, all composite numbers have at least 1 value of a \(\alpha \) s.t. \(\alpha^{N-1} \not\equiv 1 \) (mod N).

- Assume \(N \) is not prime, and is not Carmichael.

- \(\alpha^{N-1} \not\equiv 1 \) (mod N), \(\alpha \) exists.

- If no \(b \) exists s.t. \(b^{N-1} \equiv 1 \) (mod N), the Fermat primality test will return False.

- If \(b \) does exist s.t. \(b^{N-1} \equiv 1 \) (mod N), then

 \[
 (a \cdot b)^{N-1} = a^{N-1} b^{N-1} = a^{N-1} \not\equiv 1 \pmod{N}
 \]

 \Rightarrow \text{every possible } b \text{ produces an } a \cdot b, \text{ where } (a \cdot b)^{N-1} \not\equiv 1 \pmod{N}

 \Rightarrow \text{there are at least as many numbers that } \not\equiv 1 \text{ as do}

 \Rightarrow \text{Prob(Fermat's test says composite number is prime) } \leq \frac{1}{2}
Fermat's Primality Test #2

- How likely is Fermat2 to give "prime" label to a composite?

$$\Pr(\text{incorrect}) \leq \left(\frac{1}{2}\right)^k = \frac{1}{2^k}$$
Fermat's Primality Test #2

- for loop repeats $O(k)$
 - random number $O(n)$
 - modular exponentiation $O(n^3)$
 - $z \neq 1$ $O(n)$

$\Rightarrow O(k) \cdot [O(n) + O(n^3) + O(n)] = O(kn^3)$

We choose desired confidence vs. desired runtime with k.
function generate_prime(n, k): // create a prime n-bit number,
 while prime not found:
 N = random n-bit number
 if Fermat2(N, k):
 return N

Correct?

Runtime?
Generate Random Prime Correctness

- Fermat\(^2\) is correct with error \(\leq \frac{1}{2^k}\)
- Generate \(N \) : \(O(n) \) \(\Rightarrow \) \(O(kn^3) \) inside loop.
- \(\text{FermatZ}(N,k) \) : \(O(kn^3) \)
- While loop repetition?

According to Lagrange's prime number theorem! (sorry, no proof)

\[
\pi(x) \approx \frac{x}{\ln(x)} = \text{number of primes } \leq x.
\]

Probability of number being prime = \[
\frac{\pi(x)}{x} \approx \frac{x/\ln(x)}{x} = \frac{1}{\ln(x)} \approx \frac{1}{\ln(2)}
\]

= \[
\frac{1}{n \cdot \ln(2)} \approx \frac{1.44}{n}
\]

or, about 1 in \(n \) chance of being prime for \(n \)-bit number.

\(\Rightarrow \) on average \(O(n) \) repetitions.

\(\Rightarrow \) total = \(O(kn^4) \).