Color Table Class

A color table is an array of colors. It is useful for translating a single number in a range into a color, reliably.

We will use a color table to translate Julia set escape values into colors to create images.

Assignment

Create a class named \texttt{Color} and one named \texttt{ColorTable}. These classes must have the methods listed below, with the specified behaviors.

Programming Requirements

Your \texttt{Color} class must store the following data.

- The integer representation of red, green and blue channels of a color.

Your \texttt{Color} class must have the following methods.

Constructors and Getters

- \texttt{Color()}; Sets all color channels to value 0.
- \texttt{Color(const int& red, const int& green, const int& blue);} Sets the color channels to the values provided here. No range checking is applied.
- \texttt{int getRed() const;} Returns the value of the red channel.
- \texttt{int getGreen() const;} Returns the value of the green channel.
- \texttt{int getBlue() const;} Returns the value of the blue channel.
- \texttt{int getChannel(const int& channel) const;} Returns the value of the \texttt{channel}th channel. 0 == red, 1 == green, 2 == blue. Returns -1 if the channel is out of range.

Setters

- \texttt{void setRed(const int& value);} Changes the red channel to \texttt{value}. If \texttt{value} is less than 0, do not make any changes.
- \texttt{void setGreen(const int& value);} Changes the green channel to \texttt{value}. If \texttt{value} is less than 0, do not make any changes.
- \texttt{void setBlue(const int& value);} Changes the blue channel to \texttt{value}. If \texttt{value} is less than 0, do not make any changes.
- \texttt{void setChannel(const int& channel, const int& value);} Changes the \texttt{channel}th channel to \texttt{value}. If \texttt{value} is less than 0, do not make any changes. 0 == red, 1 == green, 2 == blue. Does not make changes if \texttt{channel} is out of range.

Other Methods

- \texttt{void invert(const int& max_color_value);} Inverts the red, green and blue channels, using \texttt{max_color_value}. If \texttt{max_color_value} is less than any of the current color channels (red, green or blue), then make no changes.
- \texttt{bool operator==(const Color& rhs) const;} Returns \texttt{true} if \texttt{this} and \texttt{rhs} have the same color values. Otherwise, returns \texttt{false}.

Your \texttt{ColorTable} class must store the following data.

- A linear collection of \texttt{Color}s.

Your \texttt{ColorTable} class must have the following methods.

Constructor and Getters

- \texttt{ColorTable(const size_t& num_color);} Sizes the \texttt{Color} collection to \texttt{num_color} items.
- \texttt{size_t getNumberOfColors() const;} Returns the number of \texttt{Color}s stored.

Setters
void setNumberOfColors(const size_t& num_color); Resizes the collection to hold num_color items. Previous Color contents may or may not be preserved.

Operators

- const Color& operator[](const int& i) const; Returns the ith Color in the collection. If i is out of range, returns a static memory Color object with all three channels set to -1.
- Color& operator[](const int& i); Returns the ith Color in the collection. If i is out of range, returns a static memory Color object with all three channels set to -1.

Other Methods

- void setRandomColor(const int& max_color_value, const size_t& position); Assigns the positionth color random values for all three channels. The random values are between 0 and max_color_value, inclusive. If position is out of range, no change is made. If max_color_value is less than 0, no change is made.
- void insertGradient(const Color& color1, const Color& color2, const size_t& position1, const size_t& position2); Change the colors from position1 to position2, inclusive, to be gradients from color1 to color2. If position1 is not less than position2, no change is made.

Additional Documentation

- Consider using the std::vector class template.

Show Off Your Work

To receive credit for this assignment, you must complete the unit tests available in CodeGrinder.