CS 2810: Computer Organization and Architecture

<table>
<thead>
<tr>
<th>Spring 2020 (DRAFT)</th>
<th>Reading</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 11–15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 18–22 (MLK Day)</td>
<td>K&R ch1</td>
<td>C overview/tutorial</td>
</tr>
<tr>
<td>Jan 25–29</td>
<td></td>
<td>Assembly overview/intro</td>
</tr>
<tr>
<td>Feb 1–5</td>
<td>K&R ch2</td>
<td>types and expressions</td>
</tr>
<tr>
<td>Feb 8–12</td>
<td>K&R ch3</td>
<td>control flow</td>
</tr>
<tr>
<td>Feb 15–19 (Presidents’ Day)</td>
<td>K&R ch4</td>
<td>functions</td>
</tr>
<tr>
<td>Feb 22–26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 1–5</td>
<td></td>
<td>Midterm exam</td>
</tr>
<tr>
<td>Mar 8–12 (Spring break)</td>
<td>K&R ch5</td>
<td>pointers and arrays</td>
</tr>
<tr>
<td>Mar 15–19</td>
<td>K&R ch6</td>
<td>structures</td>
</tr>
<tr>
<td>Mar 22–26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 29–Apr 2</td>
<td>K&R ch7</td>
<td>input and output</td>
</tr>
<tr>
<td>Apr 5–9</td>
<td>K&R ch8</td>
<td>Unix interface</td>
</tr>
<tr>
<td>Apr 12–16</td>
<td>K&R appx B</td>
<td>C standard library</td>
</tr>
<tr>
<td>Apr 19–23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 26–30 (Wednesday last day)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Readings are from our textbook, *Computer Organization and Design ARM Edition: The Hardware Software Interface*.

Changes to the schedule will be announced in class.

Resources

- **Syllabus**
- **Examples from class**
- Setting up [ssh](#) to connect to cs2810.cs.dixie.edu without typing a password:
 - [Written instructions](#)
 - [Screencast demo](#) (note, the written instructions are slightly simpler—open that page and follow along while you watch the screencast).
- **Command-line tutorial**
- **Modern Microprocessors: A 90-minute Guide**

git and ssh

- [git book](#)
- [cheat sheet](#)

Screencasts

- Binary and hexadecimal number systems (Khan Academy)
- Two’s complement review (11:44)
- Float review (13:47)
- Converting numbers to floats (10:23)
- Python script to convert 9-bit floats into decimal fractions
- Setting up ssh: the best way for Linux, macOS, or WSL users to connect to leghorn
- Getting started with grind and the ARM64 sum function
- Example ARM64 problem: wordcount with intro to gdb

Assembly language

- [ARM64 assembly language notes](#)

Midterm exam practice

- Binary/decimal/hex practice problems
- Two’s complement practice problems
- Float practice problems